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Abstract ­ Hierarchical knowledge structures are frequently

used within clinical decision support systems as part of the

model for generating intelligent advice. The nodes in the

hierarchy inevitably have varying influence on the decision-

making processes� which needs to be reflected by

parameters. If the model has been elicited from human

experts� it is not feasible to ask them to estimate the

parameters because there will be so many in even

moderately-sized structures. This paper describes how the

parameters could be obtained from data instead� using only

a small number of cases.

The original method [1] is applied to a particular web-

based clinical decision support system called GRiST� which

uses its hierarchical knowledge to quantify the risks

associated with mental-health problems. The knowledge

was elicited from multidisciplinary mental-health

practitioners but the tree has several thousand nodes� all

requiring an estimation of their relative influence on the

assessment process. The method described in the paper

shows how they can be obtained from about 200 cases

instead. It greatly reduces the experts’ elicitation tasks and

has the potential for being generalised to similar

knowledge-engineering domains where relative weightings

of node siblings are part of the parameter space.

Keywords: Clinical Decision Support Systems; Mental Health;

Risk Screening; Hierarchical Knowledge; Decision Trees;

Mathematical Modelling.

I. INTRODUCTION

Clinical decision support systems (CDSSs) often

work in complex domains that require modelling of

human expert knowledge [2,3]. The resulting models

may possess high numbers of parameters that need to be

instantiated, which is extremely time-consuming for the

domain experts and may not even be realistically

achievable. An important element of human expertise is

its hierarchical structuring [2], which leads to equivalent

knowledge structures within CDSSs. These structures or

trees have many nodes and the influence of each child

node on its parent node will vary across the siblings

when it comes to processing uncertainty through the tree.

Each node will therefore require a parameter to represent

its particular influence on the decision making process,

which adds up to a very large number of values to be

given by the domain experts on whom the CDSS is being

modelled. This paper describes a method for inducing the

parameters from a small number of cases instead and

shows how it has been applied to a particular CDSS in

the domain of mental health risk assessment. The method

has the potential for being generalised to any tree where

siblings of single parent nodes need individual weights to

fit the data. The paper will begin by introducing the

domain and the specific CDSS.

A. Risk assessment in mental health

Risk screening in the mental health field is a

particularly complex procedure but lacks much assistance

beyond paper-based tools [4]. At present, actuarial

approaches to risk prediction gain favour because of their

evidence base, but have a predictive value that remains

unsatisfactory. They also tend to rely on isolated factors,

not combinations [5], and ignore the individual

qualitative and idiosyncratic patient data that support

clinical judgements in practice [6]. There is a need for

tools based on clinical expertise as well as empirical

evidence and this was precisely the motivation for

developing the Galatean Risk Screening Tool, GRiST [7,

8]. It is a web-based CDSS that is designed to assist the

early detection of multiple risks, including suicide, self-

harm, harm to others, self-neglect, and vulnerability

amongst people with mental health problems. It is the

only risk-assessment tool that uses a computational

model of psychological processes to represent structured

clinical judgements of multidisciplinary mental-health

practitioners [9, 10].

GRiST has successfully elicited the hierarchical

knowledge used by expert mental-health practitioners

[11] but it generated a tree with over one thousand nodes,

each of which has a parameter representing its relative

influence on the assessment process. Asking the domain

experts to set these parameters was not feasible and an

alternative approach was investigated instead.

In essence, GRiST is a weighted decision tree where

risk is represented by fuzzy-set membership grades

(MGs) [12] that are associated with each node of the tree.

Figure 1 shows a small portion of the GRiST tree for
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suicide risk. The bottom level boxes are the data for a

patient assessment (case). These generate a MG at the

matching leaf node using a function that depends on

some parameters given by the experts for each leaf node

(see [9] for more details). The MGs then propagate up the

risk hierarchy and eventually to the top level risks, where

the MG associated with a risk represents the simulated

clinical risk judgement. The relative influence (RI) of

each node in the hierarchy is a parameter that decides

how much risk is propagated up the tree by a node

compared to its siblings [9]. This parameter also needs to

be set so that it reflects the expertise of mental-health

practitioners. Getting them to do it themselves as part of

the knowledge elicitation process is an arduous task

when the tree has so many nodes. This makes it unlikely

that a large enough set of participants can be obtained to

ensure the consensus for each RI is reliable, as opposed

to eliciting the leaf node parameters, which are far fewer:

192 for GRiST.

Figure 1: A portion of the GRiST for suicide risk

showing how the relative influences of the nodes

moderate the flow of risk. Each node MG is multiplied by

its associated RI and summed with the siblings to give the

parent MG. Note that the actual values are hypothetical.

In this paper, we devise an algorithm that induces the

RIs from the clinical judgements given by expert mental-

health practitioners for patient cases. This will mean the

RIs are modelled on the clinicians’ own risk judgements

because the RIs are set to the exact values required for

simulating those judgements. It depends on knowing the

MGs at the leaf nodes for a patient’s data along with the

associated clinical risk judgements, where the risk

judgements equate to the MG that GRiST needs to

generate at the root node (risk) for that patient. The

number of cases required to solve the RIs must be the

same as the number of cues in the patient’s data set. For

GRiST, these judgements are given by clinicians as part

of their everyday use of GRiST in practice. Hence the

elicitation process has been reduced to providing only the

parameters for the 192 leaf nodes. It is important, if not

mandatory, for having such an automated system to elicit

RIs because the sheer number is likely to mean experts

don’t do it accurately themselves.

This paper will give some background to the basic

problem, after which the method and algorithm will be

described. It will conclude with a discussion about how

the approach could have generic applicability and be

extended.

II. BACKGROUND

The problem we are trying to solve could be

represented in a more generalized form, which is a

decision tree with weighted inputs. Each input at the

leaves contributes to the final decision at the top of the

tree, through a weight that determines how much

influence the node has compared to its siblings. Every

node has these weights applied to its child nodes and, for

GRiST, there is an additional constraint that the weights

across all the sibling nodes must sum to unity. The task is

to find a way of automatically deducing the weights

throughout the tree from a minimal set of inputs and

outputs.

Most algorithms that have been developed for

learning decision trees are variations on a core algorithm

that employs a top-down, greedy search through the

space of possible trees. These algorithms generally

construct a decision tree, T, from a set of training cases

[13]. J. Ross Quinlan developed the first algorithm, ID3

[14], and based it on the Concept Learning System (CLS)

algorithm [15]. Other methods like CART (Classification

and Regression Trees) were introduced for the induction

of a tree [16].

Variations on the above methods usually deal with

the type of the input variables, the data pool or set

properties, or the output type (i.e. continuous or discrete

data) [17-19]. Most of these methods attempt to construct

the tree without prior knowledge of the desired tree

structure. This means, they try to predict the layout of the

tree and number of nodes based on the training cases.

The trees are then pruned and optimized to the minimum

structure that satisfies the classes in the training

instances.

Our problem is very different. We aim to model the

GRiST decision tree parameters mathematically, since

the structure of the tree is known in advance from the

psychological model that has been induced from the

experts [10, 11]. Hence, we are in control of the

structure, don’t require pruning and optimization
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processes, and can use the training sets purely to induce

the unknown weights in our model.

III. METHODOLOGY

In this section, we introduce the general structure of

the decision tree used by GRiST, which is the same

structure that our model will use to calculate the RI

values. It is shown in Figure 2 as follows:

LRn : denotes the RIs in level n.

Mn : denotes the MGs (Membership Grades) in level n.

Mxy : denotes the MG of node y in level x; y=0 to Zjh ,

where Zjh is the number of children of node number h-1

at level j.

Rti : denotes the RI of node number i at level t on the

total MG at level t-1 which equals M(t-1)y where y is the

number of the parent node of Rti .

Figure 2: The General GRiST DSS Tree.

To find M, the total membership grade of the tree (which

represents the overall diagnosis or risk of the patient’s

mental health [9]), there are several methodologies we

could follow. One would be to train the model using

known cases and, assuming that leaf MG values and M

are given, we could use a neural networks simulation.

The problem with neural networks is, though, that we

won’t be able to represent the internal hierarchical

structure of the GRiST tree as given by the experts,

which is crucial to the explanation of how risks are

generated. We have thus developed a method that

maintains the tree structure within a mathematical

representation and uses training sets to induce the values

of RIs. To model the tree mathematically, we follow the

psychological model underlying GRiST [9], which

defines how to calculate the overall result, M (the details

of the model are not relevant for this paper because our

algorithm applies to the RIs only, not the generation of

MGs at the leaf nodes). The MG at each node is the

summed product of each child node’s MG and RI, which

then feeds through to the next parent node in the same

way, as follows:

M = R00 M00

R00 = 1, thus, M = M00

M = R00 (R10 M10 + R11 M11 + R12 M12 + ……… +

R1Z10 M1Z10 )

If we expand the calculations for the MGs in the child

nodes, we get

M = R00 (R10 ( R20 M20 + R21 M21 + R22 M22 +

……… + R2Z10 M2Z20 ) + ........

R1Z10 ( ………………………….. ) )

If we continue this process, until we reach the leaves, the

resulting expression will be the sum of the products of all

RIs along the path to a leaf node and that leaf node’s

MG, which creates a certain pattern for the multiplication

expression that we will clarify and make use of later.

To illustrate the above, we use a simpler example of

a tree with just two levels, as shown in Figure 3, where a

to g are used to represent the specific leaf node MGs of

M20 to M27 for clarity.

M = R00 (R10 M10 + R11 M11 + R12 M12 )

= R00 (R10 ( R20 a + R21 b ) + R11 ( R22 c + R23 d ) +

R12 ( R24 e + R25 f + R26 g)

(1a)

Or:

M = R00 R10 R20 a + R00 R10 R21 b +

R00 R11 R22 c + R00 R11 R23 d +

R00 R12 R24 e + R00 R12 R25 f + R00 R12 R26 g

(1b)

Since, a to g are given, the unknowns are all the Rs.

The top-level M is also given, because it represents the

clinical judgement associated with the case (for different

cases, we will use M1, M2, M3, …). We have several of

the above equations, one per case, and can regard them as

a system of linear simultaneous equations. To solve the R
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values, we need the same number of cases as there are

leaf nodes.

Figure 3: A simple two level GRiST tree.

To simplify, we rename RI products along a path as:

A = R00 R10 R20

B = R00 R10 R21

C = R00 R11 R22

D = R00 R11 R23

E = R00 R12 R24

F = R00 R12 R25

G = R00 R12 R26 (2)

to give seven equations for our example with R00 = 1

(from the RI properties).

The system can be set up as a set of linear

simultaneous equations, as follows:

M1 = a1. A + b1. B + c1. C + d1. D + e1. E

+ f1. F + g1 .G

M2 = a2 .A + b2. B + c2 .C + d2 . D + e2. E

+ f2 .F + g2. G

.... and so on ....

M7 = a7. A + b7. B + c7. C + d7. D + e7. E

+ f7. F + g7 .G

(3)

Solving (3) is straightforward (using matrices), which

gives us A to G. But originally, we had eleven

unknowns, so to determine RIs, we need an extra four

equations in addition to the above seven. For this we use

the inherent property of RIs that they must sum to one

across all siblings:

1
0

��
�

Zxn

y

xyR (4)

In our case this gives us:

R10 + R11 + R12 = 1 (4b)

R20 + R21 = 1

R22 + R23 = 1

R24 + R25 + R26 = 1 (5)

So we have eleven equations and eleven unknowns.

By substitution, we can solve the system exploiting

another pattern:

A / B = (R10 . R20) / (R10 . R21)

= R20 / R21

So: R21 = ( B / A ) R20 (5a)

Substituting in the relevant equation, we get:

R20 + R21 = R20 + ( B / A ) R20 = 1

Or: R20 (1 + (B/A)) = 1

Or: : R20 ( (A+B) / A) = 1

Thus: R20 = A / (A+B)

By continuing in the same manner, we can obtain the

rest of the RIs.
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26

GFE
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��
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(5b)

In other words, each leaf RI can be found as a function of

the RI products along the path from each sibling leaf to

the root node. These products, A to G, have been solved
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from the simultaneous equations, so each individual leaf

RI can thus be calculated.

IV. THE COMPLETE ALGORITHM

The input to the algorithm would be n vectors of known

and diagnosed cases given by experts. In the example for

Figure 3, that vector will contain the following:

V = (M, a, b, c , d, e, f, g) (6)

where M is the top-level clinical judgement given by the

clinician for the patient MGs of a,b, … g (i.e. the leaf-

node MGs generated directly from the patient values).

The algorithm we propose can be divided into two

steps: solving for the multipliers of each leaf MG, which

are the products of the RIs along the path from the leaf to

the root (i.e. A to G), and then solving for the individual

RIs themselves.

Step 1: Solving for Multipliers

The first step will be solving n simultaneous linear

equations, where n is the total number of leaves of the

GRiST tree (seven, a to g, in Figure 3):

M1 = a1. A + b1. B + c1. C + d1. D + e1. E +

f1. F + g1 .G

M2 = a2. A + b2. B + c2 .C + d2 . D + e2. E + f2

.F + g2. G

………………………

……………

M7 = a7. A + b7. B + c7. C + d7. D + e7. E +

f7. F + g7 .G

(7)

Or in matrix form:
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�

�

G

F

E

D

C

B

A

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

M

M

M

M

M

M

M

7777777

6666666

5555555

4444444

3333333

2222222

1111111

7

6

5

4

3

2

1

(8)

Equation 8 can be solved using Gaussian Elimination so

we now know the values of A to G, which is given by the

solution, S:

S = (A, B, C, D, E, F, G) (9)

Step 2: Solving for individual RIs

To find each RI, we look at a general leaf node and its

children (see Figure 4).

Figure 4: A general leaf node with seven children.

The challenge is to devise a systematic way for deriving

the solution. Let us take a slice of matrix S, and call it S’

for simplicity; it only contains entries for leaf nodes that

are siblings and that therefore share the same ancestral

path of RIs, which is R10 … R(n-1)0 in our example.
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�

�

�

�
�
�
�
�
�
�
�
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�

�

�

n61)0-(n10

n51)0-(n10

n41)0-(n10

n31)0-(n10

n21)0-(n10

n11)0-(n10

n01)0-(n10

RR........R

RR........R

RR........R

RR........R

RR........R

RR........R

RR........R

'S
(10)

From the GRiST model [9], we know that:

Rn0 + Rn1 + Rn2 + Rn3 + Rn4 + Rn5 + Rn6 = 1

(11)

We will convert Equation 10 into a function of only one

variable, e.g. Rn0. To do this we use S’, where each of

the rows are represented by a symbol, A to G, for the RI

product along the path.

B/A = Rn1 / Rn0

Rn1 = (B/A) . Rn0

C/A = Rn2 / Rn0

Rn2 = (C/A) . Rn0

…. and so on ….
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G/A = Rn6 / Rn0

Rn6 = (G/A) . Rn0

Substituting in Equation 11:

Rn0 + (B/A) . Rn0 + (C/A) . Rn0 + (D/A) . Rn0 + (E/A) .

Rn0 + (F/A) . Rn0 + (G/A) . Rn0 = 1

Factoring out Rn0:

We get

�
�

�
�
�

�

������
�

GFEDCBA

A
R n0

Solving in the same way, we obtain:

�
�

�
�
�

�

������
�

GFEDCBA

B
R n1

… and so on to …

�
�

�
�
�

�

������
�

GFEDCBA

G
R n6

(12a)

Hence the general rule in the algorithm, to find a certain

RI in the leaf nodes is:

��
�
�
�

�

�

��
�
�
�

�

�

�

�
�

k

j

j

jS

jS
RI

1

)('

)('
(12b)

Where j is the leaf node MG (in our example, a,b,c, …),

k is the total number of siblings, and S’ is the product of

all RIs along the path from the specified leaf node to the

root node..

Step 3: Shrinking the tree

Having found the RIs of the leaf node (see Figure 4),

we can now calculate the MG for the parent node, M(n-1)0,

which can then become a leaf itself. We can do this for

all the parent nodes that have leaf nodes as children and,

by converting them into leaves themselves once their MG

has been calculated, the tree is shrunk.

Summary of the generalised algorithm

So far, the explanation has used specific trees to illustrate

it. We can now generalize the algorithm as follows.

Inputs:

V1 = (M1, Mn01, Mn11, …………, Mnk1 )

To:

Vk = (Mk, Mn0k, Mn1k, …………, Mnkk ) (16)

Where:

M1 to Mk : are the k different cases outcomes.

Mn0y : is the input MG at the leaf on the nth level (lowest

level) of the GRiST tree of the y
th

input vector (Vy).

We need k vectors to solve the resulting k simultaneous

equations where k = the number of leaf nodes of the

GRiST tree = the number of cases required.

Outputs:

RI values, representing the node weightings for every

node in the tree.

Procedure:

Step one:

Solve the following simultaneous equations:
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�
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Ak

A

A

A

Mk

M

M

M

...

...

...

3

2

1

M.........MMM

.......................

......................

........................

M...........MMM

M..........MMM

M........MMM

....

...

....

3

2

1

nkkn2kn1kn0k

nk3n23n13n03

nk2n22n12n02

nk1n21n11n01

(17)

The above matrix is kXk in dimension.

The solution yields vector A1 to Ak.

Step two:

We use S’ to denote a sub tree of each node at level (n-

1), where n is the deepest level of the tree where all

nodes are leaf nodes.

Hence we have: S’1 to S’h where h is the number of

nodes at level (n-1) in the GRiST tree.

For each subtree, S’j, we solve to find its RIs.
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�
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�
�
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�
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�
�
r

nr
rjS

rjS
RI

)('

)('
(18)

Where r represents the children (and thus leaf nodes) of

parent node j, with r going from 1 to the number of

leaves of node j at level (n - 1); j = 0 to h.

Step three:

Once the RIs have been found at a particular level,

the tree can be shrunk by a level by making the parent

nodes the new leaf nodes with their MGs calculated by:

M(n-1)h = �
r

MGjjS )(' (19)

Once the new shadow MGs are found for the new level,

we can go to step two and repeat step two and three for

the new tree. This process is continued n times (for an n-

level tree). At the end, we will have determined all the

RIs in the tree.

Case study:

This part of the paper demonstrates the effectiveness of

the algorithms using a case study with arbitrary numbers.

We will use our algorithm to calculate the RI values in

the tree shown in Figure 5. The tree has six leaves (A to

F), hence we need six training cases. The following

matrix sets up the synthetic data in the format of

Equation 17:
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�
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�

�
�
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�
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�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

F

E

D

C

B

A

4.05.05.06.01.03.0

2.09.03.04.03.02.0

3.07.06.05.04.03.0

7.08.07.03.01.02.0

2.06.04.05.02.01.0

6.03.02.04.03.01.0

1.0

8.0

7.0

9.0

4.0

3.0

(20)

Using Gaussian Elimination, to solve the above matrix

for the unknowns, we obtain:

A = -0.44 D = 0.44

B = 0.92 E = 0.964

C = -1.067 F = 0.196

Note that we use 3 decimal points approximation for

simplicity (rounding).

.

Figure 5: A sample decision sub-tree.

Using Equation 18 and the propagation technique in

Equation 19, we obtain all the RI values as in Figure 5.

To verify the model, we use the first training case (first

line in Equation 20) as an input (on Figure 5, it is the

number printed inside each leaf node, A to F).

Propagating through the decision tree using the new RI

values, we finally reach a decision (M = 0.298, inside the

top node). This is almost the same as the desired output

in the original test case, in Equation 20 (i.e. 0.3). The

error is due to approximation and using only three

decimal points precision.

The case study shows that solutions may require

negative RI values, which is only a problem if the

semantics of the knowledge domain demand positive

values. For the GRiST domain, and probably many other

knowledge-based systems, the concept of negative RIs is

not psychological meaningful, although semantically it

can be explained in terms of a bigger span between the

RIs of the siblings and those could then be mapped to

normalized values. It is possible that real-world data,

where clinicians have provided risk assessments for a
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given set of patient values, will have inherent constraints

that mean the RIs willl not be negative. However, it

remains a possibility that limiting RIs to positive values

would mean a solution cannot be found. In the next

section, we will discuss an extension to the method that

will circumvent this problem.

V. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of

eliciting parameters in the GRiST tree structure [10, 11].

These parameters can then be used to analyze new cases

and provide advice for mental health practitioners. The

techniques presented here are extending our ARRIVE [1]

algorithm, and provide a robust mathematical calculation

of the Relative Influence (RI) values in the GRiST tree

[9] that that are crucial for enabling risk quantifications

to be generated. Similar approaches could be relevant to

many intelligent knowledge-based systems based on

human expertise where the knowledge is in a hierarchical

structure and the nodes have varying influence on the

decision making processes. For GRiST, the RIs represent

varying weights of sibling nodes on their parents and

were normalised so that the total weighting across

siblings was unity for all nodes.

At present, the method is intended to initialise the

node weightings from a fixed number of cases equal to

the number of leaf nodes in the tree, where the risk

judgements have been given by expert clinicians for the

set of patient data associated with those leaf nodes. It

would be better, though, if the weightings could be

incrementally updated as new cases are classified and

future work will explore techniques for accomplishing

this. It means the RIs would be a more representative

consensus for the clinicians, having been induced from

an ever-increasing data set. The resulting weights would

thus be best estimates from the data and would enable

constraints on the range of allowable values to be set

without jeopardising the generation of solutions. The

method described in this paper could create the initial

weights that would then be updated as new cases arrive.

Other aspects of future work include analyzing the

sensitivity of the algorithms to variations in patient data

as well as the impact of missing data and noise in the

learning data sets. An interesting problem is how to

determine ways of quantifying error margins and

confidence in the risk judgements based on the

constitution of patient data sets.
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